Help functions
## -- Attaching packages ------------------------------------------------------------ tidyverse 1.2.1 --
## v ggplot2 3.2.0 v purrr 0.3.2
## v tibble 2.1.3 v dplyr 0.8.1
## v tidyr 0.8.3 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.4.0
## -- Conflicts --------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
## The following object is masked from 'package:purrr':
##
## some
## Loading required package: magrittr
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
## set_names
## The following object is masked from 'package:tidyr':
##
## extract
## Warning: package 'Cubist' was built under R version 3.6.1
## Loading required package: lattice
## Warning: package 'PerformanceAnalytics' was built under R version 3.6.1
## Loading required package: xts
## Warning: package 'xts' was built under R version 3.6.1
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.6.1
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Registered S3 method overwritten by 'xts':
## method from
## as.zoo.xts zoo
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
## Warning: package 'factoextra' was built under R version 3.6.1
## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ
## Warning: package 'clValid' was built under R version 3.6.1
## Loading required package: cluster
## Warning: Missing column names filled in: 'X1' [1]
Table 3.1: NUTS (Nomenclature des Unités Territoriales Statistiques) is the EU’s hierarchical regional division.
1 |
1 |
Stockholms |
SE1 Östra Sverige |
SE11 Stockholm |
SE110 |
2 |
3 |
Uppsala |
SE1 Östra Sverige |
SE12 Östra Mellansverige |
SE121 |
3 |
4 |
Södermanlands |
SE1 Östra Sverige |
SE12 Östra Mellansverige |
SE122 |
4 |
5 |
Östergötlands |
SE1 Östra Sverige |
SE12 Östra Mellansverige |
SE123 |
5 |
6 |
Jönköpings |
SE2 Södra Sverige |
SE21 Småland med öarna |
SE211 |
6 |
7 |
Kronobergs |
SE2 Södra Sverige |
SE21 Småland med öarna |
SE212 |
7 |
8 |
Kalmar |
SE2 Södra Sverige |
SE21 Småland med öarna |
SE213 |
8 |
9 |
Gotlands |
SE2 Södra Sverige |
SE21 Småland med öarna |
SE214 |
9 |
10 |
Blekinge |
SE2 Södra Sverige |
SE22 Sydsverige |
SE221 |
10 |
12 |
Skåne |
SE2 Södra Sverige |
SE22 Sydsverige |
SE224 |
11 |
13 |
Hallands |
SE2 Södra Sverige |
SE23 Västsverige |
SE231 |
12 |
14 |
Västra Götalands |
SE2 Södra Sverige |
SE23 Västsverige |
SE232 |
13 |
17 |
Värmlands |
SE3 Norra Sverige |
SE31 Norra Mellansverige |
SE311 |
14 |
18 |
Örebro |
SE1 Östra Sverige |
SE12 Östra Mellansverige |
SE124 |
15 |
19 |
Västmanlands |
SE1 Östra Sverige |
SE12 Östra Mellansverige |
SE125 |
16 |
20 |
Dalarnas |
SE3 Norra Sverige |
SE31 Norra Mellansverige |
SE312 |
17 |
21 |
Gävleborgs |
SE3 Norra Sverige |
SE31 Norra Mellansverige |
SE313 |
18 |
22 |
Västernorrlands |
SE3 Norra Sverige |
SE32 Mellersta Norrland |
SE321 |
19 |
23 |
Jämtlands |
SE3 Norra Sverige |
SE32 Mellersta Norrland |
SE322 |
20 |
24 |
Västerbottens |
SE3 Norra Sverige |
SE33 Övre Norrland |
SE331 |
21 |
25 |
Norrbottens |
SE3 Norra Sverige |
SE33 Övre Norrland |
SE332 |
map_ln_n <- map_ln %>%
mutate(lnkod_n = as.numeric(lnkod))
relative_dev <- function (x){
return (x / x[1])
}
tot_dev <- function (x){
scales::percent ((tail(x, 1) / x[1]) - 1)
}
perc_women <- function(x){
ifelse (length(x) == 2, scales::percent (x[2] / (x[1] + x[2])), NA)
}
perc_sal <- function(x){
ifelse (length(x) == 2, scales::percent (x[2] / x[1]), NA)
}
readfile <- function (file1){
read_csv (file1, col_types = cols(), locale = readr::locale (encoding = "latin1"), na = c("..", "NA")) %>%
gather (starts_with("19"), starts_with("20"), key = "year", value = salary) %>%
drop_na() %>%
mutate (year2 = parse_number (year)) %>%
mutate (heading = file1) %>%
mutate (relsalary = relative_dev (salary))
}